Sheath over-voltages in cross-bonded underground transmission lines

Antoine NAUD (RTE)
Gaëtan GUTIERREZ (RTE)
Wilfried FRELIN (EDF R&D)
Minh NGUYEN TUAN (EDF R&D)

Content

- Introduction
- Case study: modelling of a 90 kV cross-bonded link with EMTP-RV
 - Switching surge
 - Lightning stroke
- Conclusion & perspectives

Introduction

- For long UGL, sectionalised cross-bonding is common practice.
- Until recently, SVL were installed at each cross-bonding point.

▶ The availability of reliable tools for transient studies allows the optimization of the design of cross-bonded links.

Transients affecting UGL

UGL between substations: switching surges

Siphon: lightning strokes

Case study

- Cables: 3 x single-core 1200 mm² Al 90 kV
- Cross-bonded, 2 major sections
- SVL: 12 kV, star connection with grounded neutral

Modelling with EMTP-RV

- Underground cables: FDQ model
- Overhead lines: FD model
- **Towers**: CP model, with 10 Ω grounding
- Surge arresters: non-linear elements
- Bonding leads: lumped inductances

$$L' = \frac{\mu_0}{2\pi} \ln \left(\frac{l}{r} + \sqrt{1 + \left(\frac{l}{r}\right)^2} + \frac{r}{l} - \sqrt{1 + \left(\frac{r}{l}\right)^2} \right)$$

Modelling with EMTP-RV

- **▶ Circuit-breakers**: ideal switches
- ▶ Voltage transformers: RL circuit model

▶ Lightning: current source, Cigré wave shape

Switching surges

- Over-voltages reache 1.7 p.u. at the entrance of the UGL.
- Re-closing occurs on discharged cables, thanks to voltages transformers.
- Neither phase SA nor SVL become conductive.

Switching surges - Results

\mathcal{I}	Max. over-voltage (kV _c)				
Localisati on	Screen to earth	Screen interruption			
P0	1.12				
P1	4.88	9.04			
P2	4.85	9.26			
P3	0.68				
P4	4.33	7.91			
P5	4.18	6.42			
P6	0.17				
P6	0.17				

Over-voltages applied to cable sheaths and screen interruptions are far below their withstand levels.

- This is also true in the worst case of re-closing of a charged cable on voltage of opposite polarity.
- This is also true when performing a **sensitivity analysis** on re-closing time, length of minor sections, length of bonding leads, earthing resistances, cable cross-section, number of major sections.

Lightning stroke

- Median lightning stroke: 31 kA, probability 50 %
- Severe lightning stroke: 150 kA, probability 0.05 %
- Stroke on the UGL/OHL tower, which is the most severe configuration.

Median lightning stroke

Max screen to local earth over-voltages

Max screen interruption over-voltages

- Phase SA do not conduct.
- SVL of 1st major section conduct.
- With SVL, sheath over-voltages are excessive close to the UGL/OHL transition.
- Without SVL, sheath over-voltages at cross-bonding points are impossible to assess.
- With/wihout SVL, screen interruption over-voltages are acceptable.

Severe lightning stroke

300
250
With SVL
200
P1
P2
P4
P5

Cross-bonding point

Max screen to local earth over-voltages

Max screen interruption over-voltages

- Some phase SA conduct.
- SVL of both major sections conduct.
- Sheath over-voltages are excessive.
- Screen interruption over-voltages are excessive.

Influence of striking location

- Screen interruption over-voltages are acceptable, even for a severe stroke, if the striking location is the 2nd tower or beyond.
- ▶ Sheath over-voltages are acceptable if the striking location is the 2nd tower or beyond. This is not true for a severe stroke.

Cross-bonding or direct earthing point

Max screen to local earth over-voltages
(median lightning strokes)

Cross-bonding point
Max screen interruption over-voltages
(median lightning strokes)

Influence of skywires

- For a median stroke, sheath overvoltages are excessive, whereas screen interruption over-voltages remain acceptable.
- For a severe stroke, both sheath and screen interruption over-voltages are excessive.

Max screen to local earth over-voltages (severe lightning strokes)

Max screen interruption over-voltages (severe lightning strokes)

Probability of lightning strokes

Max lightning current for material

	1st tower	Mid-span	2 nd tower
Oversheath	9 kA	11 kA	105 kA
Screen interruption	50 kA	90 kA	200 kA

- ▶ For **screen interruptions**: the probability of destructive strokes is low.
- For **oversheaths**: the probability of destructive strokes on the 2nd tower is low.

Conclusion & perspectives

- Switching surges are not likely to cause excessive over-voltages, even without SVL.
- Median lightning strokes (50 % probability) are not harmful if beyond the 2nd tower.
- In case of strokes of very large magnitudes (0.05 % probability), excessive over-voltages occur.
- Moreover, in case of a lightning stroke:
 - SVL do not significantly reduce screen interruption over-voltages.
 - Sheath over-voltages are excessive close to the UGL/OHL transition.
- Further studies should be carried out to decide whether higher withstand levels of screen interruptions should be asked for, while suppressing the SVL.
- Tests on the field will be performed in order to validate the computations.
- These issues should be considered for other voltage levels, such as 225 kV.

Thank you for your attention.

